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Received 4 October iY82 

Abstract. A new class of type-I1 Einstein-Maxwell fields is presented. These describe 
the space-time subsequent to a collision of a gravitational wave with an electromagnetic 
wave. The gravitational wave is an arbitrary pp wave with generally non-constant polarisa- 
tion. The incoming electromagnetic wave is also an arbitrary pp wave, and it is shown 
that this is partially reflected by the gravitational wave. 

1. Introduction 

An interesting feature of Einstein’s general theory of relativity is that, being a nonlinear 
theory, it does not allow a simple superposition of fields. An exception to this occurs 
for pp waves propagating in the same direction. Bonnor (1969) and Aichelburg (1971) 
have shown that in this case the field equations are linear when written in a certain 
privileged class of coordinate systems, so that gravitational and electromagnetic waves 
can be simply superposed. In the general case, however, a nonlinear interaction occurs. 

The effects of this nonlinear interaction can be seen most clearly in situations in 
which two distinct waves, moving in different directions, propagate into the same 
region. In such cases it may be assumed that the background field, and the two waves 
before they collide, are all known. The problem is then to solve the field equations 
in the interaction region subsequent to the collision, and to examine the solutions. 

This procedure has been considered by a number of authors. However, only a 
few particular exact solutions have yet been obtained. Attention has so far been 
restricted to the collision of pp waves, and these have generally been considered in 
a flat background. When considering pp waves, it is of course always possible to 
choose a frame of reference in which the two waves propagate in directly opposite 
directions, so that only ‘head on’ collisions need to be considered. 

Szekeres (1972) has obtained a class of exact solutions describing the collision and 
interaction of pp gravitational waves with certain profiles. However, these solutions 
are also restricted by the condition that the incoming waves must have aligned constant 
polarisation. Ray (1980), Nutku and Halil (1977) and Halil (1979) have obtained 
solutions in which the polarisation of the incoming waves is not aligned, although 
they still have constant polarisation and particular profiles. A particular solution in 
which the incoming waves have variable polarisation has been obtained by Panov 
(1979b). Some general properties of solutions of this type have been described by 
Sbytov (1976) and Tipler (1980). Bell and Szekeres (1974) have also presented a 
solution for the collision and interaction of two constant-profile electromagnetic pp 
waves. Other examples of colliding electromagnetic and gravitational waves have 
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been obtained by Panov (1978, 1979a). Particular solutions describing the collision 
and scattering of an electromagnetic wave by a gravitational wave have been given 
by Griffiths (1976b). The problem of colliding neutrino fields has also been considered 
by Griffiths (1976a), and colliding scalar waves by Wu (1982). Finally, particular 
solutions describing colliding gravitational waves in an expanding background have 
been obtained by Centrella and Matzner (1982). 

The purpose of the present paper is to present a new class of exact solutions which 
describe the collision and interaction of a gravitational wave and an electromagnetic 
wave. In contrast to previous solutions of this type, these solutions are totally general. 
They describe the collision of an arbitrary pp gravitational wave with generally 
non-constant polarisation, and an arbitrary pp electromagnetic wave. The metric in 
the interaction region describes a new class of type-I1 Einstein-Maxwell fields. 

2. Field equations and boundary conditions 

The situation of a collision and subsequent interaction of two pp waves can best be 
described in terms of four distinct regions of space-time. These are connected along 
two null hypersurfaces U = 0 and t’ = 0, which in this case represent the wavefronts 
of the gravitational wave and electromagnetic wave respectively. This situation is 
represented in figure 1. 

It is assumed that throughout all four regions, two null coordinates U and U,  and 
two space-like coordinates x and y can be chosen for convenience. The metric in 
each region is chosen in such a way that the Lichnerowicz conditions are satisfied on 
each boundary. However, these must be relaxed in favour of the O’Brien-Synge 
conditions if impulsive gravitational waves are included (Rohson 1973). It is well 
known that if the metrics in regions I, I1 and I11 are initially specified then the 
space-time in region IV is determined uniquely. We therefore proceed to specify the 
fields in regions I, I1 and I11 and give field equations and boundary conditions for the 
metric in region IV. 

Figure 1. Region I is the background which in this case is taken to be flat. Regions I1 
and 111 contain approaching gravitational and electromagnetic waves respectively. Region 
I\’ represents the interaction region subsequent to the collision at U = 0, c = 0. Null 
coordinates I(  and U are chosen for convenience. 

2.1. Region I: U CO, u < O  

This background region is taken to be flat, and its metric can be written in the form 

d s 2 = 2  du do -dx2-dy2.  
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2.2. Region 11: u z 0 ,  t '<O 

This region is taken to contain a general pp gravitational wave with wavefront given 
by U = 0. The metric can be expressed in harmonic coordinates as 

(1) 

where A and B are two arbitrary functions of U. It is well known that if A / B  is a 
constant, then the wave is said to have constant polarisation, and it is possible to find 
a coordinate transformation which reduces the term B to zero. However, this condition 
is not required here. 

It has been pointed out by Szekeres (1972) that, for situations of the type considered 
here, it is more convenient to transform the metric (1) into Rosen form 

(2) 

ds2 = 2 du d V  + [ A ( X 2  - Y') +2BXY] dU2 - dx' - d Y 2  

d s 2 = 2 d u  dv-( f+f ) (evcosh  Wdx2+e-"cosh  Wdy2-2s inh  W d x d y )  

W', + V', cosh' W +2fuu(f+f)- '-f ' ,(t;-f)-2=0 

where f, V and W are functions of U, and are related by the single equation 

(3 1 
where for later convenience the derivative of a function is denoted by a subscript. 

In order to satisfy appropriate boundary conditions it is also assumed that 

f = '  2 V - W = f u = V , , = W u = O  when u = 0 .  

It can thus be seen that the space-time in regions I and I1 describes a general pp 
gravitational wave, with wavefront on the null hypersurface U = 0, propagating into 
a region that is initially flat. 

2.3. Region 111: U < 0, U 2 0 

This region is taken to contain a general pp electromagnetic wave with wavefront 
given by t' = 0. It is assumed that there is no associated free gravitational wave, so 
that the metric is asymptotically flat. This can be expressed in harmonic coordinates 
as 

d s 2 = 2 d v  d U + C ( X ' + Y 2 ) d t ' ' - d x 2 - d Y 2  

where C is an arbitrary function of tr. Again it  is convenient to transform this into 
Rosen form 

d ~ * = 2 e - ~ d u  dv-(:+g)(dx2+dy2) (4) 

where g and M are functions of U. The electromagnetic wave is described by the 
component @,, using a scale-invariant form of the Newman-Penrose notation, where 

( 5 )  
It is, of course, possible to use a particular choice of the U coordinate such that M = 0. 
In such a case Oo would be determined up to an arbitrary phase by the function g(u)  
according to equation ( 5 ) .  For later convenience, however, it is preferable here to 
retain the additional arbitrariness, and at this stage to regard g, O0 and M as functions 
of t' that are only required to satisfy equation ( 5 ) .  

4@.0&0 = -2g,, (;+g)-' 4- g t ($+ g)-'- 2g&fL (f + g)- ' ,  

In order to satisfy the appropriate boundary conditions, it is assumed that 

g = $  M = M ,  =g,  = O  when v = O .  
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2.4. Region IV: u 3 0 ,  u;-”O 

This region describes the interaction between the gravitational and electromagnetic 
waves after their collision. It can be shown (Szekeres 1972) that the metric in this 
region can be taken in the general form 

(6)  

where M, U, V and W are all functions of the two null coordinates U and U. The 
field equations can be quoted directly from Bell and Szekeres (1974) or Griffiths 
(1967b), using the same notation. They are 

ds2 = 2 e-M du dt. - e-u(eV cosh W dx2 t e-” cosh W dy2 -2  sinh W dx dy) 

U,, = U,U, (7) 

2U,, = U t  + W2 + Vt  Cosh2 W-2UszI, +4@0&,0 (8) 

2U,, =: U t  + W’, + V’, cosh2 W -2USM, +4@2(i)2 (9) 

2 W,, = U, W, + U, W, + 2 V,V, sinh W cosh W + 2i(@062 - Q2&) (10) 

2V, ,  cosh W = (U,V, +U,V,) cosh W 

- 2( V, W, + Vu W,) sinh W + 2(Q0& + @2&) 

2M,, = -UuU, + WUW, + VuV, cosh2 W 

@o,, = t (  U, - i Vu sinh W)OO + i(i W, - V, cosh W ) @ 2  

(11) 

(12) 

(13) 

(14) 

where equations (13) and (14) are, in fact, Maxwell equations. 
It is, of course, also required that the functions M, U, V and W should be 

continuous and smooth across the boundaries U I= 0 and U = 0; also must‘ be 
continuous across U = 0, and zero on U = 0. These functions are all determined 
on these hypersurfaces in terms of the functions associated with the incoming waves. 
The problem now remains to solve these equations, subject to the boundary condi- 
tions, and to interpret them. 

Q 2 , ,  = t (  U ,  t i  V,: sinh W)% - t(i W, + Vu cosh W)@O 

3. A general solution in the interaction region 

It can immediately be seen from (7) and the appropriate boundary conditions that 
the function U must be given by 

e-u = f ( u ) + g ( u )  (15) 

where f and g are the same functions as appear in regions I1 and I11 respectively. 
It is now appropriate to consider the possibility that V and U’ also retain the 

same functional form as in region 11. This suggestion does, in fact, always lead to 
exact solutions, and since the space-time in region IV is uniquely determined, it is 
appropriate to apply the condition that V and W are independent of U. 

v -  V ( u )  W = W ( u ) .  (16) 

With this condition, equations (10) and (11) imply that 

(OO& =$g,(V, cosh CV--iW,)(f+g)-l. 
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Equations (13), (14), (10) and (11) then imply that 

(17) 

(18) 

@ -I - i / 2  ie 
o-2g”( f+g) - -”2(+-g)  e 

@ 2 - : ( V ,  -. - cosh W+iWu)(f+g)-1’2(t-g)1’2 ele 

6 , = - L  2Vu sinh W. 

where 8 is a function of U only, that must satisfy the equation 

(19) 

This then determines the electromagnetic field in terms of the given functions up to 
an arbitrary constant phase. 

Finally, equations (8) and (9) can be integrated to obtain 

e-M = g , ( f +  g) -”2( f+f )”2(+-  g)..”’. (20) 

With this the remaining equation (12) is automatically satisfied. 
The metric and the electromagnetic field in region IV are now determined, and it 

can be shown that the scale-invariant components of the Weyl tensor only have the 
non-zero components 

P., = -:Ci W,, + Vu, cosh W )  - Vu W,  sinh W + :i V’, sinh W cosh W 

-!f,[3(f+g)-’-(t+f)-’](iWu + Vu cosh W )  
q f -  L 

2 - - 4 f u g d f + g ) Y 2  

which indicates that the field is of algebraic type 11. 

4. Interpretation of the solution 

In the solution given above, the incoming gravitational wave is a general type-N pp 
wave, the curvature tensor having only a q., component. It is described by three 
functions, f ( u ) ,  V ( u )  and W ( u ) ,  which are connected only through the single equation 
(3). 

The opposing electromagnetic wave, prior to the collision, is also a general pp 
wave with curvature tensor having only a 4 0 0  component. The metric is given by (4), 
which contains the arbitrary function g ( v ) .  ‘The electromagnetic field is defined by 
the component 

@ 0 -  -1 2gu( t+g) -1 /2 (~ -g )~*’2e i ,  

where a is a constant. Also the function M ( u ) ,  which appears in the metric (4) for 
convenience, is given by 

e - M  = g ” ( q + g ) - ’ / 2 ( b . - g ) - - ’ / 2 ,  

With these choices, equation ( 5 )  is satisfied automatically. 
The interaction region is determined by the metric form (6) which with (15), (16) 

and (20) is specified by the functionsf(u), V ( u )  and W ( u )  that determine the incoming 
gravitational wave, and g ( v )  which determines the incoming electromagnetic wave. 
Thus equation (3) must also be satisfied in this region. It can be seen that f and g 
are both decreasing functions, and that the metric becomes singular on the space-like 
hypersurface f + g = 0.  
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The electromagnetic wave component Oo continues through the interaction region. 
However, the component a2 also appears, which indicates that the incoming wave 
has been partially reflected. This effect is expected (Penrose 1972), since it is known 
by the Mariot-Robinson theorem that a null electromagnetic wave necessarily follows 
a shear-free null geodesic congruence. In this case the congruence associated with 
the component a0 has non-zero shear, so scattering is expected. 

The gravitational wave component q4 also continues through the interaction 
region, in which the additional component qz also appears. It can now be seen from 
the curvature invariants 

I l - i I 2 =  16 e2M(3q&4qiV3+9, ,q4)  

that the singularity on the hypersurface f + g = 0 is an essential curvature singularity, 
of the same type as those encountered with colliding gravitational waves (Tipler 1980). 

Finally it must be pointed out that the solution given above for the interaction 
region defines a new class of Einstein-Maxwell fields. They are of algebraic type 11. 
However, in this case the components of the Ricci tensor Qo0 and Qo2 are both 
non-zero, which immediately indicates that they do not belong to the classes of 
algebraically special Einstein-Maxwell fields that have previously been considered. 
The class of solutions obtained here has been presented in terms of an immediate 
physical interpretation. In addition, they include the solutions given previously 
(Griffiths 1976b) in which the electromagnetic wave has constant profile and the 
gravitational wave has constant polarisation. 
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